skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gallagher, Katherine_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The coastal region of the Western Antarctic Peninsula is considered a biological hotspot with high levels of phytoplankton productivity and krill biomass. Recent in situ observations and particle modeling studies of Palmer Canyon, a deep bathymetric feature in the region, demonstrated the presence of a recirculating eddy that traps particles, retaining a distinct particle layer over the summer season. We applied metagenomic sequencing and Imaging Flow Cytobot (IFCB) analysis to characterize the microbial community in the particle layer. We sampled across the upper water column (< 200 m) along a transect to identify the locations of increased particle density, categorizing particles into either living cells or cellular detritus via IFCB. An indicator species analysis of community composition demonstrated the diatomCorethronand the bacteriaSulfitobacterwere significantly highly abundant in samples with high levels of living cells, while the mixotrophic dinoflagellateProrocentrum texanumand prokaryotes Methanomassiliicoccales andFluviicola taffensiswere significantly more abundant in samples with high detritus within the particle layer. From our metagenomic analysis, the significantly differentially abundant metabolic pathway genes in the particle layer of Palmer Canyon included pathways for anaerobic metabolism, such as methanogenesis and sulfate reduction. Overall, our results indicate that distinct microbial species and metabolic pathway genes are present in the retained particle layer of Palmer Canyon. 
    more » « less